资源列表
[其它资源] @polynomial
说明:VC维理论和结构风险最小化准则是统计学习理论中的重要内容,基于这一理论的支持向量机算法由于具有好的泛化性能受到重视,并被研究用于文本分类问题.基于多项式核的研究工作认为SVM的泛化能力不受多项式阶数的影响,并且能够处理很高维的分类问题,用于文本分类无需进行特征选择.研究发现,随着多项式核阶数的升高,SVM文本分类器会出现过学习现象,并且特征数越多越明显,特征选择是必需的.通过估计函数集的VC维,基于结构风险最小化理论对此问题进行分析,得<苏苏> 在 2008-10-13 上传 | 大小:4.4kb | 下载:0
[其它资源] @smosvctutor
说明:非平衡数据集的分类问题经常出现在许多实际应用中.支持向量机在处理这一类问题时,整体分类性能比较低.为此,Veropoulos提出的采用不同惩罚系数的改进算法可以较好的解决此类问题.此外,可以利用序列最小优化算法简单快速的解决上述优化问题.<苏苏> 在 2008-10-13 上传 | 大小:19.25kb | 下载:0