文件名称:progarmlab4
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
The Principal component analysis, is a standard technique used for data reduction in statistical pattern recognition and signal processing
A common problem in statistical pattern recognition is feature selection or feature extraction. Feature selection is a process whereby a data space is transformed into a feature space that theory has exactly same dimension as the original data space. However the transformation is designed in such a way that the data set is represented by a reduced number of “effective features” and most of the intrinsic information content of the data or the data set undergoes a dimensionality reduction.
PCA相关搜索: feature
dimension
reduction
pca
data
dimension
FEATURE
SELECTION
RELIEF
feature
extraction
principal
component
analysis
feature
extraction
information
theory
A common problem in statistical pattern recognition is feature selection or feature extraction. Feature selection is a process whereby a data space is transformed into a feature space that theory has exactly same dimension as the original data space. However the transformation is designed in such a way that the data set is represented by a reduced number of “effective features” and most of the intrinsic information content of the data or the data set undergoes a dimensionality reduction.
PCA相关搜索: feature
dimension
reduction
pca
data
dimension
FEATURE
SELECTION
RELIEF
feature
extraction
principal
component
analysis
feature
extraction
information
theory
(系统自动生成,下载前可以参看下载内容)
下载文件列表
progarmlab4.docx