文件名称:cluster-test-VO.2
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
基于C++语言,利用K均值及其改进方法实现短文本的聚类,其中利用最远距离法实现的聚类中心初始化-Based on the C++ language, the use of K-means clustering and improved methods to achieve short text clustering centers which use the law to achieve the most remote initialization
(系统自动生成,下载前可以参看下载内容)
下载文件列表
cluster-test-VO.2
.................\ArticlesInPerCluster.txt
.................\cluster
.................\cluster.sln
.................\cluster.suo
.................\clusteredArticleId.dat
.................\.......\cluster.vcxproj
.................\.......\cluster.vcxproj.filters
.................\.......\cluster.vcxproj.user
.................\.......\Debug
.................\.......\.....\CL.read.1.tlog
.................\.......\.....\CL.write.1.tlog
.................\.......\.....\cluster.Build.CppClean.log
.................\.......\.....\cluster.exe.intermediate.manifest
.................\.......\.....\cluster.lastbuildstate
.................\.......\.....\cluster.log
.................\.......\.....\Cluster.obj
.................\.......\.....\cluster.vcxprojResolveAssemblyReference.cache
.................\.......\.....\cluster.write.1.tlog
.................\.......\.....\ITokeniser.obj
.................\.......\.....\KMeans.obj
.................\.......\.....\link.read.1.tlog
.................\.......\.....\link.write.1.tlog
.................\.......\.....\main.obj
.................\.......\.....\mt.read.1.tlog
.................\.......\.....\mt.write.1.tlog
.................\.......\.....\StopWordsHandler.obj
.................\.......\.....\TermVector.obj
.................\.......\.....\TFIDFMeasure.obj
.................\.......\.....\Tokeniser.obj
.................\.......\.....\vc100.idb
.................\.......\.....\vc100.pdb
.................\.......\input.txt
.................\Debug
.................\.....\cluster.exe
.................\.....\cluster.ilk
.................\.....\cluster.pdb
.................\InfoFromWeka.dat
.................\input.txt
.................\ipch
.................\....\cluster-ed54da5c
.................\....\................\cluster-c5612a6e.ipch
.................\keywordsinfo.dat
.................\mydict.dat
.................\tobeClustered.arff