文件名称:FINITE_DIFFERENCE_AND_SPECTRAL_MTHODS_FOR_ORDINARY
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
偏微分方程,很不错的课本,英文原版的,-Partial differential equations, it is good textbooks, the English original,相关搜索: 英文
Finite
Difference
and
Spectral
Methods
for
Ordinar
partial
differential
偏微分方程
Finite
Difference
and
Spectral
Methods
for
Ordinar
partial
differential
偏微分方程
(系统自动生成,下载前可以参看下载内容)
下载文件列表
FINITE DIFFERENCE AND SPECTRAL METHODS FOR ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS
......................................................................................\1all.pdf
......................................................................................\2all.pdf
......................................................................................\3all.pdf
......................................................................................\4all.pdf
......................................................................................\5all.pdf
......................................................................................\6all.pdf
......................................................................................\7all.pdf
......................................................................................\8all.pdf
......................................................................................\pdefront.pdf
......................................................................................\1all.pdf
......................................................................................\2all.pdf
......................................................................................\3all.pdf
......................................................................................\4all.pdf
......................................................................................\5all.pdf
......................................................................................\6all.pdf
......................................................................................\7all.pdf
......................................................................................\8all.pdf
......................................................................................\pdefront.pdf