资源列表
排序选择:
[DirextX编程] DirectX10Paper
说明:微软官方关于DirectX 10工作原理的PDF文档,开发DIRECTX10游戏必看哦-Microsoft DirectX 10 on the working principle of the PDF document, the development of the game a must-see DIRECTX10 Oh<MichaelXin> 在 2025-09-28 上传 | 大小:34.3mb | 下载:0
[单片机(51,AVR,MSP430等)] yeredor
说明:this directory contains the following: * The acdc algorithm for finding the approximate general (non-orthogonal) joint diagonalizer (in the direct Least Squares sense) of a set of Hermitian matrices. [acdc.m] * The acdc algorithm<薛耀斌> 在 2025-09-28 上传 | 大小:10kb | 下载:0
[ActiveX/DCOM] xilin
说明:This directory contains the following: [fajd.m] The FAJD algorithm for finding the approximate general (non-orthogonal) joint diagonalizer of a set of matrices. [test.m] A routine to demonstrates the way to call FAJD after generating a set of<薛耀斌> 在 2025-09-28 上传 | 大小:3kb | 下载:0
[数据库系统] WROX-Expert_One_On_One_Visual_Basic_2005_Database_
说明:一步 学VB2005数据库编程,WROX出品,Roger Jennings编写,啥也不多说了,学VB.NET必看的精品-Database Programming VB2005 step Xue, WROX produced, Roger Jennings writing, what not to say, the school must-see boutique VB.NET<MichaelXin> 在 2025-09-28 上传 | 大小:5.83mb | 下载:0
[人工智能/神经网络/遗传算法] JnS
说明:独立成分分析的批数据处理算法JADE,计算量虽然大些,但至今仍被人采用-Independent component analysis of batch data-processing algorithm JADE, although the calculation of the volume, but is still used<薛耀斌> 在 2025-09-28 上传 | 大小:33kb | 下载:0
[人工智能/神经网络/遗传算法] tca1_0.tar
说明:The tca package is a Matlab program that implements the tree-dependent component analysis (TCA) algorithms that extends the independent component analysis (ICA), where instead of looking for a linear transform that makes the data components in<薛耀斌> 在 2025-09-28 上传 | 大小:222kb | 下载:0
[matlab例程] kernel-ica1_0.tar
说明:The kernel-ica package is a Matlab program that implements the Kernel ICA algorithm for independent component analysis (ICA). The Kernel ICA algorithm is based on the minimization of a contrast function based on kernel ideas. A contrast functio<薛耀斌> 在 2025-09-28 上传 | 大小:10kb | 下载:0
[人工智能/神经网络/遗传算法] icaML
说明:he algorithm is equivalent to Infomax by Bell and Sejnowski 1995 [1] using a maximum likelihood formulation. No noise is assumed and the number of observations must equal the number of sources. The BFGS method [2] is used for optimization. The<薛耀斌> 在 2025-09-28 上传 | 大小:7kb | 下载:0