资源列表
[matlab例程] plot3d_2
说明:This function produces an image of a 3D object defined by matrix a(l,m,n) in terms of voxels the image is a view after rotating the object by angles alfa and beta (in degree) b is the image and d is its ditance to the viewer matrix The first figure d<resident e> 在 2025-10-13 上传 | 大小:1kb | 下载:0
[matlab例程] randgen2
说明:randgen(mu,mu1,mu2,cov1,cov2,cov3) = Random generation of Gaussian Samples in d-dimensions where d = 2 mu, mu1, mu2 = (x,y) coordinates(means) that the gaussian samples are centered around cov1, cov2, cov3 are the covariance matrices and will v<resident e> 在 2025-10-13 上传 | 大小:1kb | 下载:0
[matlab例程] fit_maxwell_pdf
说明: fit_maxwell_pdf - Non Linear Least Squares fit of the maxwellian distribution. given the samples of the histogram of the samples, finds the distribution parameter that fits the histogram samples. fits data to the probability of the form:<resident e> 在 2025-10-13 上传 | 大小:2kb | 下载:0
[matlab例程] fit_mix_2D_gaussian
说明:fit_mix_2D_gaussian - fit parameters for a 2D mixed-gaussian distribution using EM algorithm format: [u,covar,t,iter] = fit_mix_2D_gaussian( X,M ) input: X - input samples, Nx2 vector M - number of gaussians which are assumed to compose the<resident e> 在 2025-10-13 上传 | 大小:2kb | 下载:0
[matlab例程] fit_mix_gaussian
说明: fit_mix_gaussian - fit parameters for a mixed-gaussian distribution using EM algorithm format: [u,sig,t,iter] = fit_mix_gaussian( X,M ) input: X - input samples, Nx1 vector M - number of gaussians which are assumed to compose the distributi<resident e> 在 2025-10-13 上传 | 大小:1kb | 下载:0
[matlab例程] fit_ML_laplace
说明: fit_ML_normal - Maximum Likelihood fit of the laplace distribution of i.i.d. samples!. Given the samples of a laplace distribution, the PDF parameter is found fits data to the probability of the form: p(x) = 1/(2*b)*exp(-abs(x-u)/b)<resident e> 在 2025-10-13 上传 | 大小:1kb | 下载:0
[matlab例程] fit_ML_log_normal
说明: fit_ML_normal - Maximum Likelihood fit of the laplace distribution of i.i.d. samples!. Given the samples of a laplace distribution, the PDF parameter is found fits data to the probability of the form: p(x) = 1/(2*b)*exp(-abs(x-u)/b)<resident e> 在 2025-10-13 上传 | 大小:1kb | 下载:0
[matlab例程] fit_ML_maxwell
说明: fit_ML_normal - Maximum Likelihood fit of the log-normal distribution of i.i.d. samples!. Given the samples of a log-normal distribution, the PDF parameter is found fits data to the probability of the form: p(x) = sqrt(1/(2*pi))/(s*x)*<resident e> 在 2025-10-13 上传 | 大小:1kb | 下载:0
[matlab例程] fit_ML_normal
说明: fit_ML_normal - Maximum Likelihood fit of the normal distribution of i.i.d. samples!. Given the samples of a normal distribution, the PDF parameter is found fits data to the probability of the form: p(r) = sqrt(1/2/pi/sig^2)*exp(-((r-u<resident e> 在 2025-10-13 上传 | 大小:1kb | 下载:0
[matlab例程] fit_ML_rayleigh
说明:fit_ML_rayleigh - Maximum Likelihood fit of the rayleigh distribution of i.i.d. samples!. Given the samples of a rayleigh distribution, the PDF parameter is found fits data to the probability of the form: p(r)=r*exp(-r^2/(2*s))/s wit<resident e> 在 2025-10-13 上传 | 大小:1kb | 下载:0
[matlab例程] fit_rayleigh_pdf
说明:fit_rayleigh_pdf - Non Linear Least Squares fit of the Rayleigh distribution. given the samples of the histogram of the samples, finds the distribution parameter that fits the histogram samples.fits data to the probability of the form: p(r)=r*exp(-<resident e> 在 2025-10-13 上传 | 大小:2kb | 下载:0