资源列表
[matlab例程] dianliceng
说明:这是一个matlab编写的电离层误差图的程序。里边分别利用广播星历和模型修正进行了编程。-It is written in a matlab program ionospheric error plots. Inside were using broadcast ephemeris and model updating for the programming.<李枫> 在 2025-07-24 上传 | 大小:2kb | 下载:0
[matlab例程] white_ttwo_doa
说明:Matlab code for Direction of Arrival estimation<abhishek> 在 2025-07-24 上传 | 大小:2kb | 下载:0
[数学计算/工程计算] Mader.div.5
说明:八位数的除八位数的精确五位数除法(带著作权)...................................................中共中央总书记写的程序-In addition to eight the number of eight-digit number of the exact division of five (with copyright)<李小祥> 在 2025-07-24 上传 | 大小:2kb | 下载:0
[matlab例程] lle
说明:Locally-Linear Embedding (LLE)[9] was presented at approximately the same time as Isomap. It has several advantages over Isomap, including faster optimization when implemented to take advantage of sparse matrix algorithms, and better results with man<Karthikeyan> 在 2025-07-24 上传 | 大小:2kb | 下载:0
[matlab例程] laplacian_eigen
说明:Laplacian Eigenmaps [10] uses spectral techniques to perform dimensionality reduction. This technique relies on the basic assumption that the data lies in a low dimensional manifold in a high dimensional space.[11] This algorithm cannot embed out of<Karthikeyan> 在 2025-07-24 上传 | 大小:2kb | 下载:0
[matlab例程] ltsa
说明:LTSA[19] is based on the intuition that when a manifold is correctly unfolded, all of the tangent hyperplanes to the manifold will become aligned. It begins by computing the k-nearest neighbors of every point. It computes the tangent space at every p<Karthikeyan> 在 2025-07-24 上传 | 大小:2kb | 下载:0
[matlab例程] kernel_pca
说明:Kernel principal component analysis (kernel PCA) [1] is an extension of principal component analysis (PCA) using techniques of kernel methods. Using a kernel, the originally linear operations of PCA are done in a reproducing kernel Hilbert space with<Karthikeyan> 在 2025-07-24 上传 | 大小:2kb | 下载:0
[matlab例程] main
说明:returns the value of centroid of the shapes detected<knandan1124> 在 2025-07-24 上传 | 大小:2kb | 下载:0
[matlab例程] ADABOOST_tr
说明:adaboost算法训练,tr_func_handle and te_func_handle are function handles for training and testing of a weak learner, respectively. The weak learner has to support the learning in weighted datasets. The prototypes of these functions has to be as f<raymond> 在 2025-07-24 上传 | 大小:2kb | 下载:0