资源列表
[生物技术] Ica
说明:采用改进的帝国算法很好的解决了tsp问题(The improved Empire algorithm is a good solution to the TSP problem)<huangbaojin > 在 2025-06-12 上传 | 大小:19.09mb | 下载:0
[生物技术] 直角坐标系-zernike多项式波面拟合程序
说明:最小二乘法进行泽尼克多项式拟合将离散数据点拟合成面型。(use the least square method to fit the wavefornt with zernike polynomials.)<unick > 在 2025-06-12 上传 | 大小:862kb | 下载:4
[生物技术] irt
说明:ct图像重建工具箱,有大量的实例可以学习(This directory contains various algorithms for image reconstruction and other inverse problems such as image restoration and image registration. It also contains code for related applications including MRI pulse design.)<chiyuan > 在 2025-06-12 上传 | 大小:80.46mb | 下载:0
[生物技术] 光场相机成像
说明:从光场理论出发,实现光场相机1.0的成像过程及计算重聚焦过程模拟,代码完全可见,且尽量简洁明了。(From the light field theory, the imaging process of the light field camera and the simulation of the focusing process are realized. The code is completely visible and concise as far as possible.)<wuds0729 > 在 2025-06-12 上传 | 大小:32.46mb | 下载:0
[生物技术] gs
说明:该算法是最原始的GS算法,可实现利用频域已知振幅,空域已知振幅对空域相位的复原,另包含GS算法原始文献。(The algorithm is the original GS algorithm, which can be used to recover the spatial phase with the known amplitude in the frequency domain and the spatial domain, and include the original literat<wuds0729 > 在 2025-06-12 上传 | 大小:1.4mb | 下载:0
[生物技术] 计算点扩散函数
说明:基于Zernike多项式的波前像差到点扩散函数PSF及MTF的模拟,包含代码及相关文档,特别是PPT,值得好好看。(Based on Zernike polynomial, the simulation from wavefront aberrtation to point spread function PSF and MTF , including code and related documents, especially PPT, worthing high value.)<wuds0729 > 在 2025-06-12 上传 | 大小:1.09mb | 下载:2
[生物技术] KCFdemo+vs2017
说明:在vs2017上跑KCF追踪器,测试算法性能(run KCF tracker on vs2017)<shannonss > 在 2025-06-12 上传 | 大小:2.45mb | 下载:0
[生物技术] rcwa-1d_4_6_2014
说明:一维表面光栅MATLAB 源程序代码,应用耦合波理论分析方法计算模拟(One-dimensional surface grating MATLAB source code, the use of coupled wave theory analysis method of simulation)<孙雅琪 > 在 2025-06-12 上传 | 大小:1.07mb | 下载:0
[生物技术] ZernikeCalc
说明:计算Zernike多项式的表面数据,适合于圆形、六角形、矩形、正方形、椭圆或环形(Fits circular, hexagonal, rectangular, square, elliptical, or annulus orthogonal Zernike polynomials to the surface data provided. If no surface data is provided then plots of these polynomial functions over<Yvonne_Heather > 在 2025-06-12 上传 | 大小:19kb | 下载:0