文件名称:dogma
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
DOGMA是一个关于在线学习的工具箱,里面很多算法十分实用,包括OISVM(online independent SVM).-DOGMA is a useful online learning alogrithm by matlab code. It includes a lot of useful alogrithm, including Online independent SVM(OISVM)
(系统自动生成,下载前可以参看下载内容)
下载文件列表
demos
.....\obscure
.....\.......\README
.....\.......\demo_obscure.m
.....\.......\obscure_test.m
.....\data
.....\omcl
.....\....\README
.....\....\demo_omcl.m
.....\.directory
.....\.svn
.....\....\props
.....\....\text-base
.....\....\entries
.....\....\prop-base
.....\....\all-wcprops
.....\....\tmp
.....\....\...\props
.....\....\...\text-base
.....\....\...\prop-base
.....\om-2
.....\....\README
.....\....\demo_om2.m
banditron_multi_train.m
chisquare_sparse.c
chisquare_sparse.mexa64
compute_kernel.m
Contents.m
demo.m
hist_intersection_sparse.c
hist_intersection_sparse.mexa64
k_alma2_train.m
k_forgetron_st_train.m
k_obscure_batch_train.m
k_obscure_online_train.m
k_obscure_train.m
k_oisvm_train.m
k_om2_mp_multi_train.m
k_om2_multi_train.m
k_omcl_multi_train.m
k_pa_multi_train.m
k_pa_train.m
k_pegasos_train.m
k_perceptron_multi_train.m
k_perceptron_train.m
k_projectron_train.m
k_projectron2_multi_train.m
k_projectron2_train.m
k_sop_train.m
k_ssmd_train.m
kbeta_double.cpp
kbeta_double.mexa64
kbeta_single.cpp
kbeta_single.mexa64
licence.txt
model_init.m
model_mc_init.m
model_predict.m
pa_multi_train.m
pa_train.m
perceptron_train.m
pnorm_train.m
randnorm.m
readme.txt
shuffledata.m
sop_adapt_train.m
sop_train.m
.....\obscure
.....\.......\README
.....\.......\demo_obscure.m
.....\.......\obscure_test.m
.....\data
.....\omcl
.....\....\README
.....\....\demo_omcl.m
.....\.directory
.....\.svn
.....\....\props
.....\....\text-base
.....\....\entries
.....\....\prop-base
.....\....\all-wcprops
.....\....\tmp
.....\....\...\props
.....\....\...\text-base
.....\....\...\prop-base
.....\om-2
.....\....\README
.....\....\demo_om2.m
banditron_multi_train.m
chisquare_sparse.c
chisquare_sparse.mexa64
compute_kernel.m
Contents.m
demo.m
hist_intersection_sparse.c
hist_intersection_sparse.mexa64
k_alma2_train.m
k_forgetron_st_train.m
k_obscure_batch_train.m
k_obscure_online_train.m
k_obscure_train.m
k_oisvm_train.m
k_om2_mp_multi_train.m
k_om2_multi_train.m
k_omcl_multi_train.m
k_pa_multi_train.m
k_pa_train.m
k_pegasos_train.m
k_perceptron_multi_train.m
k_perceptron_train.m
k_projectron_train.m
k_projectron2_multi_train.m
k_projectron2_train.m
k_sop_train.m
k_ssmd_train.m
kbeta_double.cpp
kbeta_double.mexa64
kbeta_single.cpp
kbeta_single.mexa64
licence.txt
model_init.m
model_mc_init.m
model_predict.m
pa_multi_train.m
pa_train.m
perceptron_train.m
pnorm_train.m
randnorm.m
readme.txt
shuffledata.m
sop_adapt_train.m
sop_train.m