文件名称:ANN
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
ann matlab neural network
(系统自动生成,下载前可以参看下载内容)
下载文件列表
| 文件名 | 大小 | 更新时间 |
|---|---|---|
| ANN\Adaptive Filters 10 | ||
| ...\....................\Adaptive Filter Example.m | ||
| ...\....................\Adaptive Filter Example1.m | ||
| ...\....................\Adaptive Noise Cancellation.m | ||
| ...\Application Example | ||
| ...\...................\alphabet 1.m | ||
| ...\...................\alphabet 2.m | ||
| ...\...................\Elman 2.m | ||
| ...\...................\Elman networks 1.m | ||
| ...\...................\Linear Filter.m | ||
| ...\Backpropagation 5 | ||
| ...\..................\Automated Regularization (trainbr).m | ||
| ...\..................\Batch Gradient Descent (traingd).m | ||
| ...\..................\Batch Gradient Descent with Momentum (traingdm.m | ||
| ...\..................\feedfor.m | ||
| ...\..................\Fletcher-Reeves Update (traincgf).m | ||
| ...\..................\Levenberg-Marquardt (trainlm).m | ||
| ...\..................\Modified Performance Function.m | ||
| ...\..................\One Step Secant Algorithm (trainoss).m | ||
| ...\..................\Polak-Ribi俽e Update (traincgp).m | ||
| ...\..................\Powell-Beale Restarts (traincgb).m | ||
| ...\..................\Quasi-Newton Algorithms (trainbgf).m | ||
| ...\..................\Resilient Backpropagation (trainrp).m | ||
| ...\..................\Sample Training Session.m | ||
| ...\..................\Scaled Conjugate Gradient (trainscg).m | ||
| ...\..................\Variable Learning Rate (traingda | traingdx).m | |
| ...\Linear Filters 4 | ||
| ...\.................\Creating a Linear Neuron (newlin).m | ||
| ...\.................\Linear Classification (train).m | ||
| ...\.................\Linear System Design (newlind).m | ||
| ...\.................\net 5.m | ||
| ...\.................\newlin1.m | ||
| ...\.................\Tapped Delay Line.m | ||
| ...\.................\Too Large a Learning Rate.m | ||
| ...\Neuron Model 2 | ||
| ...\...............\Batch Training With Dynamic Networks.m | ||
| ...\...............\Batch Training with Static Networks.asv | ||
| ...\...............\Batch Training with Static Networks.m | ||
| ...\...............\Example.m | ||
| ...\...............\Incremental Training with Dynamic Networks.m | ||
| ...\...............\Incremental Training with Static N EXA.asv | ||
| ...\...............\Incremental Training with Static N EXA.m | ||
| ...\...............\Incremental Training with Static Networks 2.m | ||
| ...\...............\Incremental Training with Static Networks 3.m | ||
| ...\...............\Simulation With Concurrent Inputs in a Dynamic Network.m | ||
| ...\...............\Simulation With Concurrent Inputs in a Static Network.m | ||
| ...\...............\Simulation With Sequential Inputs in a Dynamic Network.m | ||
| ...\Perceptrons 3 | ||
| ...\..............\a.m | ||
| ...\..............\Normalized Perceptron Rule.m | ||
| ...\..............\Outliers and the Normalized Perceptron Rule.m | ||
| ...\..............\perceptron 2.m | ||
| ...\..............\perceptron 3.asv | ||
| ...\..............\perceptron 3.m | ||
| ...\..............\perceptron 4.asv | ||
| ...\..............\perceptron 4.m | ||
| ...\..............\perceptron limitation.m | ||
| ...\..............\perseptron 1.m | ||
| ...\..............\simulat perceptron.m | ||
| ...\Radial Basis Networks 7 | ||
| ...\........................\Design (newpnn).m | ||
| ...\........................\GRNN Function Approximation.m | ||
| ...\........................\PNN Classification.m | ||
| ...\Recurrent 9 | ||
| ...\............\Creating an Elman Network (newelm).m | ||
| ...\............\Design (newhop).m | ||
| ...\............\Example.m | ||
| ...\............\Hopfield Three Neuron Design.m | ||
| ...\Self-Organizing 8 | ||
| ...\..................\Competitive Learning.m | ||
| ...\..................\Creating a Self Organizing MAP Neural Network.m | ||
| ...\..................\Creating an LVQ Network (newlvq).m | ||
| ...\..................\One-Dimensional Self-organizing Map.m | ||
| ...\..................\self 0.m | ||
| ...\..................\self 1.m | ||
| ...\..................\som.m | ||
| ...\..................\Two-Dimensional Self-organizing Map.m |