文件名称:matlab
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
数值方法(MATLAB版)第四版的上机答案 语言是matlab 一般每个题目一个文件夹 主程序一般为main文件-Numerical methods (MATLAB version) fourth edition of the machine language is the answer to every problem a general matlab folder as the main file main general
(系统自动生成,下载前可以参看下载内容)
下载文件列表
| 文件名 | 大小 | 更新时间 |
|---|---|---|
|
| ||
| 上机作业参考答案\P270(6.2.6.1)(基于N加1点的差分求导)\Newton多项式插值 | 直接求导.doc | |
| ................\.49(2.2.4.3)(二分法与试值法)\bisect.asv | ||
| ................\.160(4.2.2.1)(多项式计算算法)\derivation.asv | ||
| ................\.260(6.1.6.1)(使用极限的微分求解)\difflim.asv | ||
| ................\..70(6.2.6.1)(基于N加1点的差分求导)\diffnew.asv | ||
| ................\...................................\diffnewAll.asv | ||
| ................\...................................\diffnewI.asv | ||
| ................\.93(3.2.8.1)(矩阵乘法 | 立方体旋转)\DispCube.asv | |
| ................\.171(4.3.5.2)(拉格朗日多项式)\lagran.asv | ||
| ................\.202(5.1.4.1)(最小二乘拟合曲线)\main.asv | ||
| ................\.31(1.3.10.1)(求二次根)\main.asv | ||
| ................\.69(2.4.8.4)(求立方根的近似值)\main.asv | ||
| ................\.270(6.2.6.1)(基于N加1点的差分求导)\main.asv | ||
| ................\.160(4.2.2.1)(多项式计算算法)\main.asv | ||
| ................\.260(6.1.6.1)(使用极限的微分求解)\main.asv | ||
| ................\.154(4.1.3.1)(绘制sin(x)的图形和表)\main.asv | ||
| ................\..71(4.3.5.2)(拉格朗日多项式)\main.asv | ||
| ................\.31(1.3.10.2)(求极限)\main.asv | ||
| ................\.49(2.2.4.3)(二分法与试值法)\main.asv | ||
| ................\.69(2.4.8.4)(求立方根的近似值)\newton.asv | ||
| ................\.160(4.2.2.1)(多项式计算算法)\polynomial.asv | ||
| ................\.49(2.2.4.3)(二分法与试值法)\bisect.m | ||
| ................\.160(4.2.2.1)(多项式计算算法)\derivation.m | ||
| ................\.............................\detGauss.m | ||
| ................\.260(6.1.6.1)(使用极限的微分求解)\difflim.m | ||
| ................\..70(6.2.6.1)(基于N加1点的差分求导)\diffnew.m | ||
| ................\...................................\diffnewAll.m | ||
| ................\...................................\diffnewI.m | ||
| ................\.93(3.2.8.1)(矩阵乘法 | 立方体旋转)\DispCube.m | |
| ................\.40(2.1.5.1)(求不动点)\fixpt.m | ||
| ................\.160(4.2.2.1)(多项式计算算法)\integration.m | ||
| ................\..71(4.3.5.2)(拉格朗日多项式)\lagran.m | ||
| ................\.202(5.1.4.1)(最小二乘拟合曲线)\lsline.m | ||
| ................\...............................\main.m | ||
| ................\.160(4.2.2.1)(多项式计算算法)\main.m | ||
| ................\.260(6.1.6.1)(使用极限的微分求解)\main.m | ||
| ................\..70(6.2.6.1)(基于N加1点的差分求导)\main.m | ||
| ................\.178(4.4.4.1)(牛顿插值多项式)\main.m | ||
| ................\.69(2.4.8.4)(求立方根的近似值)\main.m | ||
| ................\.154(4.1.3.1)(绘制sin(x)的图形和表)\main.m | ||
| ................\..71(4.3.5.2)(拉格朗日多项式)\main.m | ||
| ................\.93(3.2.8.1)(矩阵乘法 | 立方体旋转)\main.m | |
| ................\.31(1.3.10.1)(求二次根)\main.m | ||
| ................\...........2)(求极限)\main.m | ||
| ................\.49(2.2.4.3)(二分法与试值法)\main.m | ||
| ................\..0(2.1.5.1)(求不动点)\main.m | ||
| ................\......................\main2.m | ||
| ................\.31(1.3.10.1)(求二次根)\mysqrt.m | ||
| ................\.178(4.4.4.1)(牛顿插值多项式)\newpoly.m | ||
| ................\.69(2.4.8.4)(求立方根的近似值)\newton.m | ||
| ................\.40(2.1.5.1)(求不动点)\plotfixpt.m | ||
| ................\.160(4.2.2.1)(多项式计算算法)\polynomial.m | ||
| ................\.49(2.2.4.3)(二分法与试值法)\regula.m | ||
| ................\..0(2.1.5.1)(求不动点)\sqrtm.m | ||
| ................\P160(4.2.2.1)(多项式计算算法) | ||
| ................\P154(4.1.3.1)(绘制sin(x)的图形和表) | ||
| ................\P270(6.2.6.1)(基于N加1点的差分求导) | ||
| ................\P93(3.2.8.1)(矩阵乘法 | 立方体旋转) | |
| ................\P178(4.4.4.1)(牛顿插值多项式) | ||
| ................\P40(2.1.5.1)(求不动点) | ||
| ................\P31(1.3.10.1)(求二次根) | ||
| ................\P260(6.1.6.1)(使用极限的微分求解) | ||
| ................\P202(5.1.4.1)(最小二乘拟合曲线) | ||
| ................\P171(4.3.5.2)(拉格朗日多项式) | ||
| ................\P31(1.3.10.2)(求极限) | ||
| ................\P49(2.2.4.3)(二分法与试值法) | ||
| ................\P69(2.4.8.4)(求立方根的近似值) | ||
| 上机作业参考答案 |