文件名称:sentiment
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
对企业的新闻动态,通过情感分析的方法,利用matlab编程实现,确定新闻的好坏程度-News of the companies, by the method of sentiment analysis, the use of matlab programming, to determine the extent of bad news
(系统自动生成,下载前可以参看下载内容)
下载文件列表
| 文件名 | 大小 | 更新时间 |
|---|---|---|
|
| ||
| sentiment\2.txt | ||
| .........\3.txt | ||
| .........\python 代码.txt | ||
| .........\Review-Helpfulness-Prediction-377ff4c86a7cb6dd0b15b33f6baaf1511aa8f954\.gitignore | ||
| .........\......................................................................\main\Feature extraction module\Difference features\entropy perplexity feature.py | ||
| .........\......................................................................\....\.........................\Informative features\centroid score feature.py | ||
| .........\......................................................................\....\.........................\....................\name brand attribute feature.py | ||
| .........\......................................................................\....\.........................\....................\product name | brand and attribute\attibute.txt | |
| .........\......................................................................\....\.........................\....................\.................................\brand.txt | ||
| .........\......................................................................\....\.........................\....................\.................................\name.txt | ||
| .........\......................................................................\....\.........................\....................\review and editorial review similarity\Editorial review example.txt | ||
| .........\......................................................................\....\.........................\....................\review similarity feature.py | ||
| .........\......................................................................\....\.........................\Linguisitic features\adj adv v feature.py | ||
| .........\......................................................................\....\.........................\....................\word sentence length feature.py | ||
| .........\......................................................................\....\.........................\Sentiment features\Machine learning features\pos neg ml feature.py | ||
| .........\......................................................................\....\.........................\..................\.........................\seniment review set\neg_review.xlsx | ||
| .........\......................................................................\....\.........................\..................\.........................\...................\pos_review.xlsx | ||
| .........\......................................................................\....\.........................\..................\.........................\sentiment_classifier.pkl | ||
| .........\......................................................................\....\.........................\..................\.........................\store sentiment classifier.py | ||
| .........\......................................................................\....\.........................\..................\Sentiment dictionary features\pos neg senti dict feature.py | ||
| .........\......................................................................\....\.........................\..................\.............................\sentiment dictionary\adverbs of degree dictionary\insufficiently.txt | ||
| .........\......................................................................\....\.........................\..................\.............................\....................\............................\inverse.txt | ||
| .........\......................................................................\....\.........................\..................\.............................\....................\............................\ish.txt | ||
| .........\......................................................................\....\.........................\..................\.............................\....................\............................\more.txt | ||
| .........\......................................................................\....\.........................\..................\.............................\....................\............................\most.txt | ||
| .... |