文件名称:deboor-cox
- 所属分类:
- 人工智能/神经网络/遗传算法
- 资源属性:
- 上传时间:
- 2012-11-26
- 文件大小:
- 216kb
- 下载次数:
- 1次
- 提 供 者:
- 高*
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
目的:运用强化学习!多分类器集成!降维方法等最新计算机技术,结合细胞病理知识,设计制作/智能化肺癌细胞病理图像诊断系统0"方法:采集细胞图像,运用基于强化学习的图像分割法将细胞区域从背景中分离出来 运用基于样条和改进2方法对重叠细胞进行分离和重构 提取40个细胞特征用于贝叶斯!支持向量机!紧邻和决策树4种分类器,集成产生肺癌细胞分类结果 建立肺癌细胞病理图库,运用基于等降维方法对细胞进行比对,给予未定型癌细胞分类"结果:/智能化肺癌细胞病理诊断系统0应用于临床随机1200例肺部病灶穿刺细胞学涂片,肺癌识别诊断率94180 ,假阳性率1185 ,假阴性率3135 ,肺癌分类识别率82190 ,核异型细胞识别率74120 "结论:/智能化肺癌早期细胞病理诊断系统0对肺癌细胞涂片诊断率高,克服了肺癌细胞病理诊断过程中取检细胞数量少,重叠细胞识别率低,涂片背景及染色差异等干扰因素,可辅助临床肺部病灶的穿刺细胞病理诊断"-Objective Design and develop a intelligent cytopathological lung cancer diagnosing system(ICLCDS) utilizing the latest computer technologies(including Reinforcement Lcaming Multiple Classifier Fusion and Dimcnsionality Reduction) and the cy-topathological knowledge on lung canccrcclls Methods We got information ofcclls and segregated cell regions in a slice image using an magi scgmcntouon a址orithm Sascd on reinforcement lcaming including rcconstmction of overlapped cell area Sascd on B一Spline and improved dcBoor-Cox Mcthoc} We comSincd multiple classifiers including Baycsian classific:Support Vector Machine(SVM)
classific K-Ncarcst NcighSour( KNN) and Decision c classific to achieve an accurate result of cytopathological lung cancer diag-nosis Results Experimental results on 1 200 cases randomly selected we as follows the accurate diagnosis rate for lung cancer idcn-tification was the false positive rate was 1. 8`J /c‘the false negative rate was 3. 3`J /c‘the type class相关搜索: lung
cancer
cancer
采集
lung
KNN
classifier
分类
knn
and
svm
强化学习
图像
分割
Cancer
using
SVM
in
matlab
classific K-Ncarcst NcighSour( KNN) and Decision c classific to achieve an accurate result of cytopathological lung cancer diag-nosis Results Experimental results on 1 200 cases randomly selected we as follows the accurate diagnosis rate for lung cancer idcn-tification was the false positive rate was 1. 8`J /c‘the false negative rate was 3. 3`J /c‘the type class相关搜索: lung
cancer
cancer
采集
lung
KNN
classifier
分类
knn
and
svm
强化学习
图像
分割
Cancer
using
SVM
in
matlab
(系统自动生成,下载前可以参看下载内容)
下载文件列表
计算机辅助肺癌细胞病理诊断的初步研究.caj